Hourly Power Consumption Prediction for Residential Houses Using Artificial Neural Network Models
نویسندگان
چکیده
In this study several Artificial Neural Network (ANN) models were experimented to predict electricity consumption for a residential house in New Zealand. The effect of number of users in the house, day of the week and weather variables on electricity consumption was analyzed. Each model has been constructed using different structures, learning algorithms and transfer functions in order to come up with the best model which has better generalizing ability. Further each model has been experimented with different number of neurons in the hidden layers and different number of delays in the tapped layers, and their effect on prediction accuracy was analyzed. Subsequently the most accurate ANN model was used to study the effects of weather predictor variables on the electricity consumption. Actual input and output data were used in the training, validation and testing process. A comparison among the developed neural network models was performed to find the most suitable model. Finally the selected ANN model has been used to predict 24 hours in advance electricity consumption for a residential house in New Zealand. Keywords-Power Consumption; Levenberg-Marquardt; Neural Network; Load Prediction
منابع مشابه
Hourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks
In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...
متن کاملArtificial neural network model to predict the performance of a diesel power generator fueled with biodiesel
Alternative fuels are intensively investigated for the replacement of the diesel fuel. Today the diesel power generators are mostly used in the various industrial companies in Iran. Therefore, it is necessary to estimate the level of performance of the diesel power generators fueled with biofuels. For the first time, in this study, the prediction of the performance of a diesel power generator m...
متن کاملESTIMATION OF GAS HOLDUP AND INPUT POWER IN FROTH FLOTATION USING ARTIFICIAL NEURAL NETWORK
Multivariable regression and artificial neural network procedures were used to modeling of the input power and gas holdup of flotation. The stepwise nonlinear equations have shown greater accuracy than linear ones where they can predict input power, and gas holdup with the correlation coefficients of 0.79 thereby 0.51 in the linear, and R2=0.88 versus 0.52 in the non linear, respectively. ...
متن کاملSurface Tension Prediction of Hydrocarbon Mixtures Using Artificial Neural Network
In this study, artificial neural network was used to predict the surface tension of 20 hydrocarbon mixtures. Experimental data was divided into two parts (70% for training and 30% for testing). Optimal configuration of the network was obtained with minimization of prediction error on testing data. The accuracy of our proposed model was compared with four well-known empirical equations. The arti...
متن کاملAvailability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models
In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving avera...
متن کامل